The history of fiberglass

29 Apr.,2024

 

The history of fiberglass

The use of fiberglass dates back to 1836 when Ignace Dubus-Bonnel received the world’s first patent on a method of making them. At the time, fiberglass was hard to make thin enough to be completely flexible, and no reliable method of mass production existed.

You will get efficient and thoughtful service from Tuoxin.

These problems would only be solved in 1932 by Dale Kleist, a graduate student who was working part-time at Owens-Illinois as a researcher. The company wanted to make glass blocks for architectural use, and its researchers were looking for a way to seal the two halves of a block together so that moisture couldn’t get inside.

He decided to try a metal-spraying gun with molten glass instead of bronze and discovered that it created a shower of ultrafine, thread-like glass fibers.

Owens-Illinois immediately recognized that this was an excellent way to make glass wool for insulation and that it might be adaptable for other applications.

Four years and the researchers were turning out individual strands long and flexible enough to be woven into cloth. The cloth was remarkably strong, and it could be cut and folded just like ordinary fabrics.

Bibliographical Reference:

The Fiberglass Story, written by Michael Lamm

Fiberglass: History, Characteristics, Types, Forms, and ...

Fiberglass, a composite material made of woven glass fibers bound together by resin, has gained remarkable recognition due to its distinctive qualities. It is the top choice in industries ranging from construction to aerospace for its durability, resistance to corrosion, and lightweight properties.

This article explores the history, key traits, different types, various forms, and exceptional properties of fiberglass. Read on to find out more about this material. 

What Is Fiberglass?

Fiberglass, otherwise known as glass-reinforced plastic (GRP) or glass-fiber-reinforced plastic (GFRP), is a composite material made from extremely fine fibers of glass. These glass fibers are typically woven into a fabric-like mat or used as a reinforcement material in a plastic resin matrix. The resulting composite material combines the strength and durability of glass with the flexibility and moldability of plastic.

What Is the History of Fiberglass?

The history of fiberglass begins with ancient civilizations like the Phoenicians and Egyptians, who first experimented with glass fibers for decorative purposes. However, these early endeavors were limited in scope, producing only coarse fibers, and the true potential of fiberglass remained unrealized.

Are you interested in learning more about Fiberglass Yarn manufacturer? Contact us today to secure an expert consultation!

Fast forward to the late 19th century; John Player developed a revolutionary process for mass-producing glass strands, primarily for insulation. In 1880, Herman Hammesfahr received a patent for fiberglass cloth interwoven with silk, making it both durable and flame-retardant. These developments laid the foundation for future innovations.

In the 1930s, a chance discovery in Toledo, Ohio, changed the trajectory of fiberglass history. Dale Kleist, a researcher at Owens-Illinois, accidentally created a shower of fine glass fibers while attempting to weld glass blocks. Recognizing the potential of this accidental discovery, engineers refined the process of producing glass fibers efficiently and inexpensively, patenting it in 1933. This marked a crucial turning point, with the first commercially successful glass fiber product—an air filter—hitting the market in 1932.

What Is the Other Term for Fiberglass?

Fiberglass is also called: GRP, short for glass-reinforced plastic or polyester; FRP, which stands for fiber-reinforced plastic; or glass-fiber reinforced plastic (GFRP). The terminology used depends on the location and the industry or sector that uses it. 

How Is Fiberglass Made?

The manufacturing process of fiberglass starts with the careful selection and preparation of raw materials, including: limestone, silica sand, soda ash, and various additives like borax, magnesite, nepheline syenite, feldspar, kaolin clay, and alumina. Waste glass, or cullet, can also be used as raw material. These materials are meticulously measured and mixed together —a step known as batching—before it is introduced into a furnace. The furnace is crucial for melting these raw materials into molten glass, with temperatures reaching around 1,371 °C (2,500 °F). Precise temperature control is maintained to ensure a smooth and continuous flow of molten glass.

The molten glass is directed to various forming processes depending on the desired fiberglass type. Various processes can be used to create fibers, including the direct melt process in which molten glass is formed into fibers straight from the furnace, or the use of glass marbles of roughly 1.6 cm (0.62 in.) in diameter that allows visual inspection for impurities. Examples of these processes include passing molten glass through bushings that are electrically heated and have very small orifices, resulting in fine filaments. A continuous filament process involves winding the filaments at high speed to produce long, continuous fibers. A staple-fiber process rapidly cools the filaments with jets of air, breaking them into shorter lengths. Chopped fiber can be obtained by cutting the long-staple strand into shorter lengths.

What Is the Typical Duration Required to Manufacture Fiberglass?

There is no exact duration required to manufacture fiberglass. The time it will take depends on different factors like: the desired fiberglass type, specific product or application, product complexity, the manufacturing process used, the scale of production, curing time, automation, and finishing operations. Some simple fiberglass products may be manufactured in a matter of hours or days, while more complex items may take several weeks or even months to complete. The specific timeline for a fiberglass manufacturing project should be discussed with a manufacturer, as it depends on the product's unique characteristics and the production facility's capabilities.

What Is the Importance of Fiberglass in the Manufacturing Industry?

The importance of fiberglass in the manufacturing industry lies in its unique blend of properties. Not only is it lightweight, but it is also stronger than most traditional materials. Besides this, it can withstand harsh conditions without warping and buckling. This is why it is implemented in such a wide range of applications, from construction and pool and bath manufacturing to printed circuit boards and sporting equipment..

What Are the Characteristics of Fiberglass?

The main characteristics of fiberglass are as follows:

  1. Durable and strong.
  2. Stiff.
  3. Lightweight.
  4. Fire resistant. 
  5. Excellent insulation material. 
  6. Exceptional chemical resistance.
  7. High corrosion resistance.
  8. Dimensionally stable material.
  9. Insensitive to temperature and humidity changes.
  10. Resists warping, bending, distortion, or shrinking.
  11. Moisture resistant.

What Is the Color of Fiberglass?

Fiberglass itself is typically whitish, almost colorless, or transparent in color. However, it can be manufactured and coated in various colors depending on the specific application and requirements. The color of fiberglass products can range from white or gray to black or other custom colors, depending on the additives, coatings, or dyes used during the manufacturing process. PTFE-coated fiberglass fabrics, tapes, and belts are commonly tan in color, often referred to as "natural" within the industry.

What Does Fiberglass Look Like?

Fiberglass typically appears as a fine, thread-like material made of glass. It can be in the form of filaments, mats, or woven fabrics, depending on its intended use. The color of fiberglass can vary but is often white or translucent. It may also be coated or treated with other materials, which can affect its appearance. Overall, fiberglass has a fibrous and somewhat translucent appearance (see Figure 1 below): 

Want more information on drywall joint tape vs mesh? Feel free to contact us.